

2021 Academic Scholarship Examination Paper STAGE TWO

CHEMISTRY

23 – 25 February 2021

Time allowed: 30 minutes

Total marks: 28

PLEASE WRITE IN BLACK INK

Calculators are not allowed.

Please write on the paper provided.

You are unlikely to have come across most of the questions below. Don't worry, everything you need is given to you. Read the information given in the questions carefully and use it to reason your answers.

1. Fossil fuels have arguably been the single most important energy source in the world and still enjoy this status today. Crude oil is one type of fossil fuel which is a mixture of many hydrocarbons.

Examples of the simplest hydrocarbons are shown in Table 1 below. The displayed formula shows you how the carbon and hydrogen atoms are connected (with the straight lines '-'). The condensed formula is just what it says. A kind of displayed formula but without the lines.

Name of hydrocarbon	Displayed formula	Condensed formula	Molecular formula	Empirical formula
methane	H H—C—H H	CH ₄	CH ₄	CH ₄
ethane	H H 	CH ₃ CH ₃	C ₂ H ₆	CH₃
propane	H H H	CH₃CH₂CH₃	C ₃ H ₈	C₃H ₈
butane	H H H H 	CH ₃ CH ₂ CH ₂ CH ₃	C ₄ H ₁₀	C ₂ H ₅
pentane	H H H H H 	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	C ₅ H ₁₂	C ₅ H ₁₂
2-methylbutane	H H H H H C C C C C H H H C H H H H	CH₃CH₂CHCH₃CH₃	see Question 2 below	see Question 5 below
see Question 8 below	H H H H H H - C - C - C - C - H H H H C - H H H H H	see Question 8 below	C ₆ H ₁₄	C₃H ₇

Table 1

1. Given that ethanol, CH₃CH₂OH, is not a hydrocarbon, suggest a definition for the term <i>hydrocarbon</i> .		
	[:	1]
2. Predict the molecular formula for 2-methylbutane from the ta	able above.	
	[:	1]
3. Suggest the empirical formulae for the following two compou		2]
a) C ₆ H ₁₂ O ₆	t. b) C ₉ H ₂₀	د]
4. What do you think the molecular formula tells you?		
	[:	2]
5. Give the empirical formal of 2-methylbutane		
	[:	1]
6. What do you think the empirical formula tells you?		
	[:	1]

7. Pentane and 2-methyl butane are called isomers as they have the same molecular formula but a different structure. Can you draw another isomer that belongs to pentane?			
	[1]		
8. This question refers to the last row in Table 1 above.			
a) Give the name of the hydrocarbon.			
	[1]		
b) Give the condensed formula.			
	[1]		
9. As you can see from Table 1 above each carbon has four bonds to four other atoms (here hydrogens). The bonds are signified by a line '-'			
Draw the displayed formula of two different hydrocarbons that both have a total of seven carbon atoms.			
	[2]		
10. Write the molecular formula of the hudroscular that has to result or at our			
10. Write the molecular formula of the hydrocarbon that has ten carbon atoms.	[1]		
	[1]		

1. Look closely at Table 1. Can you find a general molecular formular for the hydrocarbons? That leans for a given number of carbon atoms, n , how many hydrogen atoms must be present? Expressor answer in terms of n .		
	1] 	
12. Petrol is a mixture of various hydrocarbons with 4 to 12 carbon atoms. It is obtained by distillation of crude oil. Answer the questions below.		
a) On what physical property is distillation based? When is distillation used in a separation process?)	
]	2]	

b) Table 2 below shows the parts of crude oil (called fractions) obtained from the distillation process.

Fraction	Boiling point / °C	Number of carbon atoms in the hydrocarbons.
Refinery gas	-16 – -5	1-4
Petrol	40 – 110	5 – 8
Naphtha	110 – 180	8 – 10
Kerosene	180 – 260	10 – 16
Diesel	260 – 320	16 – 20
Fuel Oil	320 – 400	20 – 50
Bitumen	400 – 600	> 50

Table 2

uggest a relationship b	oetween chain length and	d boiling point.	
entadecane is a hydro tadecane?	ocarbon with a boiling po	int of 271 °C. In which	fraction would you fin
Table 3 summarises th	ne yearly demand for som	ne of the fractions of cr	rude oil.
Fraction	Uses	Summer demand	Winter demand
Refinery gas	Gaseous fuel (bottled gas), chemical production	4%	3%
Gasoline (petrol)	Automobile fuel, chemical production	32%	29%
Kerosene (paraffin)	Heating fuel, jet fuel	12%	6%
Diesel oil	Diesel fuel for trucks, buses, trains, etc.; heating fuel	17%	23%
Residue fuel	Fuel for power stations, ships, etc.; can be distilled further into lubricating oil, waxes, etc.	35%	39%
	Tab	le 3	
gest why in the winter	the demand for Gasoline	e is lower and Diesel oi	l higher.
•			

13. Kerosene is one of the fractions obtained from crude oil. It is a liquid with density of 0.800 g cm⁻³ and is also used to store reactive metals such as sodium and potassium. It prevents oxygen from reacting with the metals. Using Table 4 suggest why the reactive metal lithium can still react with oxygen when it is stored in kerosene?

Metal	Density / g cm ⁻³	
Lithium	0.534	
Sodium	0.968	
Potassium	0.89	
Rubidium	1.532	

Table 4

	[2]
14. One kilogram of petrol has an energy content of 45 000 000 J. This is 45 megajoules per kilogor 45 \pm 10 ⁶ J kg ⁻¹ . A typical car can hold about 50 litres of petrol.	gram
a) Calculate in Joules (J), the energy that would be released when the 50 litres of petrol are combusted in a petrol engine. (The density of petrol is 0.775 kg/litre.)	
	[3]
b) Give your answer above in megajoules (MJ) and to four significant figures.	1
	[2]