

RADLEY

2024 Academic Scholarship Examination Paper COMBINED SCIENCE

CHEMISTRY

20 February - 21 February 2024
Time allowed - 30 minutes

Some of the questions in this paper will be new to you and are designed to introduce you to new concepts. Therefore, appropriate information will be provided.

Important Information:

* Read the information given for each question carefully.
* Answer all the questions in the spaces provided.
* If more space is required, please use the additional space at the end of the paper.
ensuring that you clearly number your answers.
* A Periodic Table is provided at the end of the paper.

1. The development of the periodic table is one of mankind's greatest achievements. Each atom is assigned its own number, the atomic number, starting with 1 for hydrogen (H) all the way to 118 for ununoctium (UuO) as you can see on the periodic table at the end of this paper. The atoms are also arranged in rows and columns with increasing atomic number from left to right. Atoms form elements and the various types of elements are separated into the metals and the nonmetals. The dividing line is the diagonal from boron (B, group 3) to astatine (At, group 7). Those right on the boundary are called the metalloids (semimetals).
a) Predict if the following elements belong to the group of the metals, non-metals or semimetals. Tick the correct box.

	Atom (atomic number)	Metal	Non-metal	Metalloid
(i)	Sodium (11)			
(ii)	Silicon (14)			
(iii)	Nitrogen (7)			
(iv)	Tellurium (52)			
(v)	Neon (10)			

b) Consider the following formulae.

NH_{3} - molecule		BH_{3} - molecule		ZnBr2 - compound
NaCl - compound		CaSO_{4} - compound		O 2 - molecule
HCl - molecule		HNO_{3} - molecule		$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ - compound

Hydrogen sulfide is a foul-smelling and poisonous gas with the formula $\mathrm{H}_{2} \mathrm{~S}$.
(i) Based on the table above deduce whether hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$, is classified as a molecule or a compound.
\qquad
(ii) Explain your answer to the previous question (part (i)).
\qquad
\qquad
c) Atoms are the building blocks for elements and compounds. Elements and compounds can occur in all three states of matter.
(i) State the difference between an element and a compound.
\qquad
\qquad
(ii) List the three common states of matter.
(iii) Which two physical quantities determine the state of matter of a substance?
\qquad
\qquad
(iv) Explain the change of the arrangement and movement of the particles in a substance when this substance melts. Contrast the before and after it melts.
\qquad
\qquad
\qquad
\qquad
(v) Energy is required to melt a substance. What is the energy used for?
\qquad
(vi) Explain why a bicycle tyre that is already fully filled with water would burst if more water was added whereas you can still add more air to an air-inflated bicycle tyre.
\qquad
\qquad
\qquad
\qquad
(vii) If you add a block of silver to a block of copper they do not mix. On the other hand fruit juice and water will mix. Can you explain this observation in terms of the particles involved?
\qquad
\qquad
\qquad
\qquad
(viii) What can you do to make the silver and copper blocks mix? Explain what happens in terms of their particles.
\qquad
\qquad
\qquad
\qquad
2. In Chemistry we use symbols to represent atoms. The letters tell us the type of atom (they are all listed in the periodic table), i.e. O stands for oxygen and any digits tell us the number of them. Small digits on the right close to the symbol tell us the number of atoms that are bonded together. This is called a molecule or compound. Big digits at the front of a formula tells as the number of individual molecules or compounds:

O 2 means that two oxygen atoms are bonded. Oxygen, O_{2}, is called a molecule.
2 O means two individual oxygen atoms.
$2 \mathrm{O}_{2}$ means two individual oxygen molecules.

Guess what this means: CaCO_{3} (it's called calcium carbonate)....

You may have guessed correctly: there are $1 x$ calcium (Ca), $1 x$ carbon (C) and $3 x$ oxygen (O) atoms bonded together.
a) Can you deduce what this formula means: $\mathrm{K}_{2} \mathrm{SO}_{4}$
\qquad
\qquad
\qquad
\qquad
b) and what about this one:
$2 \mathrm{Al}_{2} \mathrm{O}_{3}$
\qquad
\qquad
\qquad
\qquad
c) What goes in comes out! The following question is about adding up.

In a chemical reaction we turn substances into other substances. In the process nothing is lost and all the atoms from the reactants (the substances you started with) end up in the products (what you get out at the end).

For example when hydrogen reacts with oxygen water is formed:
In symbol form this is:

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

You can readily see that there are two hydrogens (H) on both sides of the arrow, but there are two oxygens on the left (goes in) and only one oxygen on the right (comes out). A balanced equations is therefore:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

We cannot take away, only add. Now try to do the same with the following equations:
(i) \qquad $\mathrm{Na}+$ \qquad $\mathrm{S} \rightarrow$ \qquad Na 2 S
(ii) \qquad $\mathrm{C}_{2} \mathrm{H} 6+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
(iii) \qquad $\mathrm{Rb}+$ \qquad $\mathrm{H}_{2} \mathrm{O} \rightarrow$ \qquad $\mathrm{RbOH}+$ \qquad H_{2}
(iv) Copper can react with concentrated nitric acid to form the gas nitrogen monoxide.

$$
3 \mathrm{Cu}+a \mathrm{HNO}_{3} \rightarrow b \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+c \mathrm{H}_{2} \mathrm{O}+d \mathrm{NO}
$$

What is the value of a when the equation is balanced?
$a=$ \qquad

End of paper

* The Lanthanides (atomic numbers $58-71$) and the Actinides (atomic numbers $90-103$) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

